
Technical Report

CMU/SEI-89-TR-18
ESD-89-TR-26

Carnegie-Mellon University

Software Engineering Institute

A Real-Time Locking Protocol
Lui Sha

Ragunathan Rajkumar
Sang Son

Chun-Hyon Chang

April 1989

ADAin^

Technical Report
CMU/SEI-89-TR-18

ESD-89-TR-26
April 1989

A Real-Time Locking Protocol

Lui Sha
Real-Time Scheduling in Ada Project

Ragunathan Rajkumar
Carnegie Mellon University

Sang Son
University of Virginia

Chun-Hyon Chang
Kon Kuk University, Seoul, Korea

Approved for public release.
Distribution unlimited.

Software Engineering Institute
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

This report was prepared for the

SEI Joint Program Office
ESD/AVS
Hanscom AFB, MA 01731

The ideas and findings in this report should not be construed as an official DoD position. It is pub-
lished in the interest of scientific and technical information exchange.

Review and Approval

This report has been reviewed and is approved for publication.

FOR THE COMMANDER

.haries J. Ryan, Major.^SAF
SEI Joint Program Office

This work is sponsored by the U.S. Department of Defense.

Copyright © 1989 Carnegie Mellon University

This document is available through the Defense Technical Information Center. DTIC provides access to and transfer of scientific and
technical information for DoD personnel, DoD contractors and potential contractors, and other U.S. Government agency personnel
and their contractors. To obtain a copy, please contact DTIC directly: Defense Technical Information Center, Attn: FDRA. Cameron
Station. Alexandria, VA 22304-6145.

Copies of this document are also available through the National Technical Information Service. For information on ordering, please
contact NTIS directly: National Technical Information Service, U.S. Department of Commerce, Springfield, VA 22161.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Table of Contents

1. Introduction 1

2. The Read- or Write-Priority Ceiling Protocol 3
2.1. Basic Concepts 3
2.2. Definitions and Properties 7

3. Performance Evaluation 13

4. Conclusions 19

References 21

CMU/SEI-89-TR-18

CMU/SEI-89-TR-18

List of Figures
Figure 2-1: Sequence of Events Described in Example 2 6
Figure 3-1: Balanced Workload 14
Figure 3-2: I/O Bounded Workload 15
Figure 3-3: With Intention I/O 16
Figure 3-4: Percentage of Missing Deadline 17

CMU/SEI-89-TR-18 ill

A Real-Time
Locking Protocol

Abstract: When a database system is used in a real-time application, the concur-
rency control protocol must satisfy not only the consistency of shared data but
also the timing constraints of the application. In this paper, we examine a priority-
driven two-phase lock protocol called the read- or write-priority ceiling protocol.
We show that this protocol is free of deadlock, and in addition a high-priority trans-
action can be blocked by lower priority transactions for at most the duration of a
single embedded transaction. We then evaluate system performance experimen-
tally.

1. Introduction

In a real-time database context, concurrency control protocols must not only maintain the
consistency constraints of the database but also satisfy the timing requirements of the trans-
actions accessing the database.

Both concurrency control [2,3,4,5,7,16,17,18, 20, 21, 23, 26] and real-time scheduling
algorithms [10,11,13,14,15,19, 22,27] are active areas of research in their own right. It
may seem that the development of a real-time locking protocol is a simple matter of combin-
ing priority scheduling with a locking protocol. For example, we may require each trans-
action to use a well-known concurrency protocol such as the two-phase lock protocol [6] and
assign priorities to transactions according to some well-known scheduling algorithms such
as the earliest deadline algorithm [19]. Next, we process transactions in priority order. Un-
fortunately, such an approach may lead to unbounded priority inversion, in which a high-
priority task would wait for lower priority tasks for an indefinite period of time.

Example 1: Suppose T.,, T2, and T3 are three transactions arranged in descending order of
priority, with T1 having the highest priority. Assume that transaction T1 and T3 share the
same data object O. Suppose that at time t: transaction T3 obtains a write-lock on O. Dur-
ing the execution of T3, the high-priority task T, arrives and attempts to read-lock the object
O. Transaction T1 will be blocked, since O is already write-locked. We would expect that
Tv being the highest priority transaction, will be blocked no longer than the time for T3 to
complete and unlock O. However, the duration of blocking may, in fact, be unbounded. This
is because transaction T3 can be preempted by the intermediate-priority transaction T2 that
does not need to access O. The preemption of T3, and hence the blocking of T1, will con-
tinue until T2 and any other pending intermediate-priority level transactions are completed.

The blocking duration in Example 1 can be arbitrarily long. This situation can be partially
remedied if transactions are not allowed to be preempted; however, this solution is only ap-
propriate for very short transactions, because it creates unnecessary blocking. For instance,
once a long, low-priority transaction starts execution, a high-priority transaction not requiring

CMU/SEI-89-TR-18

access to the same set of data objects may be needlessly blocked.1 An objective of this
paper is to design an appropriate priority management protocol for a given concurrency con-
trol protocol so that deadlocks can be avoided and the duration of blocking can be tightly
bounded.

1The priority inversion problem was first discussed by Lampson and Redall [9] in the context of monitors. They
suggest that each monitor always be executed at a priority level higher than ail tasks that would ever call the
monitor.

CMU/SEI-89-TR-18

2. The Read- or Write-Priority Ceiling Protocol

2.1. Basic Concepts
Real-time databases are often used by applications such as tracking. Since tracking opera-
tions consist of both signal processing and database accessing, we assume that each in-
stance of a periodic task consists of data-processing code and embedded transactions
operating on the database. We assume that an embedded transaction consists of a se-
quence of read and write operations operating upon the database. A task can have multiple
embedded transactions. However, embedded transactions in a task do not overlap. Each
embedded transaction will follow the two-phase lock protocol [6], which requires a trans-
action to acquire all the locks before it releases any lock. Once a transaction releases a
lock, it cannot acquire any new lock.

In this section, we also assume that all the tasks are periodic, which models the periodic
operation of sensors. In addition, we assume that the database resides in the main memory.
We will, however, relax both assumptions in the next section. When tasks are periodic, we
assume that their priorities are assigned by the rate monotonic algorithm in which a shorter
period task has a higher priority. It was shown in [15] that the rate monotonic algorithm is an
optimal static-priority scheduling algorithm for periodic tasks. A high-priority task will preempt
the execution of lower priority tasks unless it is blocked by the read- or write-priority ceiling
protocol defined later in this report.

With only two-phase locking and priority assignment, we can encounter the problem of un-
bounded priority inversion as illustrated in Example 1. However, the idea of priority in-
heritance [24] solves the unbounded priority inversion problem. In the context of preemptive
scheduling, a higher priority task x can preempt the execution of lower priority tasks unless x
is blocked by the locking protocol. The priority inheritance rule states that when the trans-
action of task x blocks the execution of higher priority tasks, it executes (inherits) at the
highest priority of all the tasks blocked by x. To illustrate this idea, let us apply this protocol
to Example 1. Suppose that task x1 is blocked by task x3. The priority-inheritance protocol
requires task x3 to execute its transaction at the priority of task x1 until it releases the lock on
data object O. As a result, task x2 will be unable to preempt x3. Once task x3 unlocks data
object O, it returns to its assigned priority and will immediately be preempted by x-,. As we
can see, this simple priority-inheritance idea reduces the blocking time of a higher priority
task from the entire execution time of lower priority tasks to only the duration of lower priority
tasks' embedded transactions.

The second idea is a total priority ordering of active transactions. A transaction embedded in
a task is said to be active if it has started but not yet completed its execution. Thus a trans-
action can be active in one of two ways: executing or being preempted in the middle of its
execution. The idea of a total priority ordering is that we want our protocol to ensure that
each active transaction is executed at a higher priority level, taking priority inheritance and
the read and write semantics into consideration. Together with the first idea, we get the

CMU/SEI-89-TR-18

properties of freedom from deadlock and a worst-case blocking of at most a single em-
bedded transaction. We shall refer to the latter property as the block-at-most-once property.

To ensure the total priority ordering of active transactions, we define three parameters for
each data object in the database: the write-priority ceiling, the absolute priority ceiling and
the read- or write-priority ceiling. The write-priority ceiling of a data object O is simply the
priority of the highest priority task that may write O. The absolute priority ceiling of O is the
priority of the highest priority task that may read or write O. The read- or write-priority ceiling
of the data object is, however, set dynamically. We shall use the rule that a task x cannot
read or write-lock a data object and execute its transaction unless its priority is higher than
the highest priority read- or write-priority ceiling locked by tasks other than x. We shall refer
to this rule as the ceiling rule.

When a task write-locks a data object O, O cannot be read or written by another task. To
ensure that, we can set the read- or write-priority ceiling of O equal to its absolute priority
ceiling. Since the absolute priority ceiling of O is equal to the priority of the highest priority
task that may either read or write O, it prevents another task from reading or writing O until
the lock on O is released. Similarly, when a task read-locks a data object O, O cannot be
written by another task. To ensure this, when a data object O is read-locked by a trans-
action, we set the read- or write-priority ceiling of O equal to the write-priority ceiling of O.
Since the write-priority ceiling equals the priority of the highest priority task that may write O,
the ceiling rule prevents another transaction from writing O. Read transactions with priorities
higher than the write-priority ceiling of O can share the read-lock on O however. On the
other hand, this protocol forbids read transactions with priorities lower than or equal to the
write-priority ceiling of O from sharing the read-lock on O. This is important. Should we allow
these low-priority read transactions to share a read-lock on O, when the high-priority write
transaction arrives and attempts to write O, it has to wait for multiple readers. That is, a task
can be blocked by multiple lower priority embedded transactions. As we shall see in
Theorem 8, longer blocking durations lead to lower schedulability.

From the viewpoint of priority management, the objective of the read- or write-priority ceiling
is to ensure that each embedded transaction is executed at a higher priority level than the
priority levels which can be inherited by preempted transactions. When a transaction T
write-locks a single data object O, the read- or write-priority ceiling of O represents the
highest priority that T can inherit through O. For example, when T write-locks O, it can block
the highest priority task xH that may read or write O and hence inherit the priority of xH.
Therefore, the read- or write-priority ceiling of a write-locked object is defined to be equal to
the absolute priority ceiling. Alternatively, let a low-priority transaction hold a read-lock on a
data object O and let transaction Tw be the highest priority transaction that may request a
write-lock on O. Transaction T can block xw and inherit the priority of xw. Therefore, the
read- or write-priority ceiling of a read-locked data object is defined as the data object's
write-priority ceiling.

Under the read- or write-priority ceiling protocol, a task x cannot acquire a lock and execute
its embedded transaction unless its priority is higher than all the read- or write-priority ceil-

CMU/SEI-89-TR-18

ings of the data object locked by tasks other than x. Since the highest read- or write-priority
ceiling of the locked data objects represents the highest priority level that the currently active
transactions can execute (inherit), we ensure that the transaction of x executes at a priority
level higher than all the preempted transactions, should x be able to execute its transaction.

Such total priority ordering of active transactions leads to some interesting behavior. For
example, the read- or write-priority ceiling protocol may forbid a transaction from locking an
unlocked data object. At first sight, this seems to introduce unnecessary blocking. How-
ever, this is, in fact, the "insurance premium" for preventing mutual deadlock and the block-
at-most-once property.

Example 2: Suppose that we have three tasks, x0, x1, and x2, arranged in descending order
of priority. In addition, there are two data objects 01 and 02.

to » {• • •, write-kxKO^, • • •, unlock(P^, •••)

x, • {• • •, reacHocKOJ, • • •, write-lock{Oj), • • •, unlockiP^, • • •, unlock(Ox), •••}

X2 • {• • •, read-/oc/c(02), • • •, write-lock(0{), • • •, unlocKpx), •••, unlock(p2), •••}

The sequence of events described in Example 2 is depicted in Figure 2-2. A line at a low
level indicates that the corresponding task is blocked or has been preempted by a higher
priority task. A line raised to a higher level indicates that the task is executing. The absence
of a line indicates that the task has not yet arrived or has completed. Shaded portions in-
dicate execution of transactions.

First, we establish the priority ceiling of each of the data objects. The write-priority ceiling
and absolute priority ceiling for data object 01 are the priorities of tasks t2 and x1, P2 and
Py respectively. For data object 02, both the write and absolute priority ceiling are equal to
Py For data object O0, both ceilings are equal to P0.

Suppose that at time tQ, task x2 starts its execution. At time ^, x2 has executed read-lock
(02) and the read- or write-priority ceiling of 02 is set at the write-priority ceiling of 02, i.e.,
Py Having locked 02, task x2 starts executing its embedded transaction T2. At this instant,
task x1 is initiated and preempts transaction T2. However, when task x1 tries to execute its
embedded transaction at time f2 by making an indivisible system call to execute read-lock
(0.|), the scheduler will find the priority of P^ of task x1 is not higher than the read- or write-
priority ceiling of locked data object 02, which was set at Pv Hence, the scheduler
suspends transaction x1 without letting it lock 01. Note that x, is blocked outside its em-
bedded transaction. Transaction T2 now inherits the priority of task x1 and resumes execu-
tion. Since x1 is denied the lock on 01 and suspended instead, a potential deadlock be-
tween T| and T2 is prevented. If x, were granted the lock on 01, then x., would later wait for
x2 to release the lock on 02, while x2 would wait for x1 to release the lock on 01.

On the other hand, suppose that at time t3, while T2 is still in its transaction, the highest
priority task x0 arrives and attempts to write-lock data object O0. Since the priority of x0 is

CMU/SEI-89-TR-18

I A Transaction accessing O

A Transaction accessing O

A Transaction accessing O,

0

O write-locked OL unlocked
0 4 /0

blocked by X2 Q1 read-locked
O write-locked

2 O unlocked
Q, unlocked

J (attempt to lock O) \ i •: / '

O read-locked °1 write-,oc
v
ked $.

mM 2 unlocked

'o l1 V3 l< Ve t t time

Figure 2-1: Sequence of Events described in Example 2.

higher than the read- or write-priority ceiling of locked data object 02, task x0's transaction
T0 will be granted the lock on the data object O0. Task x0 will therefore continue and execute
its transaction, thereby effectively preempting T2 in its transaction and not encountering any
blocking. At time f4, T0 completes execution and T2 is awakened, for T, is blocked by T2. T2

continues execution and write-locks Ov At time %, T2 releases O.,. At time /g, when T2

releases 02, task x2 resumes its assigned priority. Now T, is signaled. Having a higher
priority, it preempts T2 and completes execution. Finally, T2 resumes and completes.

Note that in the above example, T0 is never blocked. x1 was blocked by the lower priority
task x2 during the intervals [t2, f3] and [f4, y.2 However, these two intervals correspond to

^e interval [tj, r4] is not considered blocking for T, since it was only preempted by the higher priority task TQ.

CMU/SEI-89-TR-18

the duration that T2 needs to lock the two data objects. Thus, the blocking duration of x1 is
equal to the duration of a single embedded transaction of a lower priority transaction T2,
even though the actual blocking occurs over disjointed time intervals. It is, indeed, a prop-
erty of this protocol that any task x can be blocked by, at most, one lower priority embedded
transaction until x suspends itself or completes.

2.2. Definitions and Properties
Having reviewed the basic concepts, we now review our assumptions and state the notation
used. We assume that we are given a centralized database system and there is a set of
periodic tasks. In addition, we assume that all the data objects reside in the main memory.
Since tracking operations consist of both signal processing and database accessing, we as-
sume that each instance of a periodic task executes signal processing codes and embedded
transactions. We assume that the rate-monotonic algorithm is used to assign a priority to
each task. This algorithm assigns higher priorities to tasks with shorter periods and is an
optimal static-priority algorithm for periodic tasks [15]. If two tasks are ready to run on a
processor, the higher priority task will run. Equal priority tasks are run in a FCFS (first come,
first served) order. We also assume that a transaction does not attempt to lock an object
that it has already locked and thus deadlock with itself. We also assume that either multiple
read-locks or a single write-lock can be held on a data object.

Notation: We denote the given tasks as an ordered set {x.,, • • •, xn} where the tasks are
listed in descending order of priority, with x1 having the highest priority.

Notation: We use Ts: to denote an embedded transaction of task x,. We will also use the
simplified notation Tj when the identity of /is not important.

Notation: We use the notation P{ to denote the priority of task Xj.

Definition: The lock on a data object can either be a read-lock or a write-lock. A task x that
holds a read-lock (write-lock) on a data object O is said to have read-locked (write-locked)
object O. The write-priority ceiling of a data object is defined as the priority of the highest
priority task that may write this object. The absolute priority ceiling is defined as the priority
of the highest priority task that may either read or write this data object. When a data object
O is write-locked, the read- or write-priority ceiling of O is defined to be equal to the absolute
priority ceiling of O. When a data object O is read-locked, the read- or write-priority ceiling
of O is defined to be equal to the write priority ceiling of O.

Having stated our objectives and our assumptions, we now define the read- or write-priority
ceiling protocol.

1. Task x, having the highest priority among the tasks ready to run, is assigned
the processor. Before task x starts to execute an embedded transaction T,
task x must first obtain the locks on the data objects that it accesses. In addi-
tion, each embedded transaction follows the two-phase lock protocol and all
the locks will be released at the end of the transaction.

CMU/SEI-89-TFM8

2. Let 0H be the data object with the highest read- or write-priority ceiling of all
data objects currently locked by transactions other than those of x. When the
transaction of task x attempts to lock a data object O, x will be blocked and the
lock on an object O will be denied, if the priority of task x is not higher than the
read- or write-priority ceiling of data object 0H. In this case, task x is said to be
blocked by the task whose transaction holds the lock on 0H. If the priority of
task x is higher than the read- or write-priority ceiling of 0H, then x is granted

the lock on O3.
3. A task x and its transaction T uses the priority assigned to x, unless T blocks

higher priority transactions. If transaction T blocks higher priority tasks, T
inherits PH, the highest priority of the tasks blocked by T. Priority inheritance is
transitive. Finally, the operations of priority inheritance and of the resumption
of original priority must be indivisible.

4. When a task x does not attempt to execute an embedded transaction, it can
preempt other tasks and their embedded transactions executing at a lower pri-
ority level.

Remark: Under this protocol, we need not explicitly check for the possibility of read-write
conflicts. For instance, when an object O is write-locked by a task x, the read- or write-
priority ceiling of O is equal to the priority of the highest priority task that can access O.
Hence, the protocol will block a higher priority task that may want to write or read 0. On the
other hand, suppose that the object O is read-locked by x. Then, the read- or write-priority
ceiling of O is equal to the highest priority task that may write O. Hence, a task that attempts
to write O will have a priority no higher than the read- or write-priority ceiling and will be
blocked. Only the tasks that read O and have priority higher than the read- or write-priority
ceiling will be allowed to read-lock O, and read-locks are compatible.

Under the read- or write-priority ceiling protocol, mutual deadlock of transactions cannot oc-
cur and each task can be blocked by at most one embedded transaction until it completes or
suspends itself. We shall now prove both these properties of the read- or write-priority ceil-
ing protocol.

Lemma 1: Under the read- or write-priority ceiling protocol, each transaction will
execute at a higher priority level than the level that the preempted transactions
can inherit
Proof: By the definition of the read- or write-priority ceiling protocol, when a task x
locks a set of data objects, the highest priority level x can inherit is equal to the
highest read- or write-priority ceiling of the data objects locked by x. Hence, when
the priority of task xH is higher than the highest read- or write-priority ceiling of the
data objects locked by a transaction T of task x, the transactions of xH will execute
at a priority that is higher than the preempted transaction T can inherit.

Theorem 2: There is no mutual deadlock under the read- or write-priority ceiling
protocol.

3Under this condition, there will be no read-write conflict on the object O, and we need not check if O has been
locked. See the remark that follows the protocol definition.

CMU/SEI-89-TR-18

Proof: Suppose that a mutual deadlock can occur. Let the highest priority of all
the tasks involved in the deadlock be P. Due to the transitivity of priority in-
heritance, all the tasks involved in the deadlock will eventually inherit the same
highest priority P. This contradicts Lemma 1.

Lemma 3: Under the read- or write-priority ceiling protocol, until task x either com-
pletes its execution or suspends itself, task x can be blocked for at most a single
embedded transaction of a lower priority task xL, even if tL has multiple embedded
transactions.

Proof: Suppose that task x is blocked by a lower priority task xL. By Theorem 2,
there will be no deadlock and hence task xL will exit its current transaction at some
instant fv Once task xL exits its transaction at time f1(task xL is preempted by x.
Since xL is no longer within a transaction, it cannot inherit a higher priority than its
own priority unless it executes another transaction. However, xL cannot resume
execution until x completes or suspends itself. The Lemma follows.

Theorem 4: Under the read- or write-priority ceiling protocol, a task x can be
blocked by at most a single embedded transaction of one lower priority task until
either x completes its execution or suspends itself.

Proof: Suppose that x is blocked by n lower priority transactions. Given Lemma
3, x must be blocked by the transactions of n different lower priority tasks, x1t
xn, where the priority of x; is assumed to be higher than or equal to that of xj+1.
Under the protocol, a task not in a transaction can always be preempted by a
higher priority task. Hence, a lower priority task cannot block a higher priority task
unless it is already in its transaction. Therefore, tasks x1 xn must be in their
transactions when x arrives. By assumption, x is blocked by xn and xn inherits the
priority of x. Since x can be blocked by xn, the priority of task x cannot be higher
than the highest priority P that can be inherited by xn. On the other hand, by
Lemma 1, the priority of task xn_.| is higher than P. It follows that the priority of task
xnA is higher than that of task x. This contradicts the assumption that the priority
of x is higher than that of tasks x., xn.

Corollary 5: If a task t, suspends itself at most k times, then the above theorem
holds with the duration of blocking equal to k+1 embedded transactions.

Remark: The read- or write-priority ceiling protocol is selectively restrictive on the sharing of
read-locks. The reason is that a direct application of the read and write semantic can lead
to prolonged durations of blocking. For example, suppose that we have a single write trans-
action at the highest priority level and ten lower priority read transactions. If we let ten trans-
actions concurrently hold read-locks on data object O, then when a higher priority task ar-
rives later and attempts to write O, it has to wait for all ten of these transactions to complete.
That is, some forms of concurrency can lengthen the worst-case duration of blocking, result-
ing in poorer schedulability.

We now develop a set of sufficient conditions under which a set of periodic tasks with hard
deadlines at the end of the periods can be scheduled by the rate-monotonic algorithm [15]
when the read- or write-priority ceiling protocol is used.

Liu and Layland propose the following theorem, which was proved under the assumption of
independent tasks; i.e., there is no blocking due to data sharing and synchronization.

CMU/SEI-89-TR-18

Theorem 6: A set of n periodic tasks scheduled by the rate-monotonic algorithm
can always meet their deadlines if

^1+ ... +_2<«(21/n-l)

where Cj and Tj are the execution time and period of task x(respectively.

Theorem 6 offers a sufficient (worst-case) condition that characterizes the rate-monotonic
schedulability of a given periodic task set. An exact characterization of rate-monotonic
schedulability can be found in [12].

When tasks are independent of one another and do not access shared data, Theorem 6
provides us with the condition under which a set of n periodic tasks can be scheduled by the
rate-monotonic algorithm.4 Although this theorem takes into account the effect of a task
being preempted by higher priority tasks, it does not consider the effect of blocking caused
by lower priority tasks upon schedulability analysis. We now consider the effect of blocking.

Theorem 7: A lower priority write transaction Tw can block a higher priority task x
with priority P, if and only if Tw may write-lock a data object whose absolute prior-
ity ceiling is higher than or equal to P. A lower priority read transaction Tr can
block a higher priority task x with priority P, if and only if Tr may read-lock a data
object whose write-priority ceiling is higher than or equal to P.

Proof: It directly follows from the definitions of the read- or write-priority ceiling
protocol.

Let Z be the set of embedded transactions that could block task x. By Theorem 4, task x
can be blocked for at most the duration of a single element in Z if it does not suspend itself.
Hence the worst-case blocking time for x is the duration of the longest embedded trans-
action in Z when x does not suspend itself. If the task x suspends itself k times, then the
worst-case blocking time is equal to the sum of the k+1 longest elements in Z. We denote
this worst-case blocking time of task Xj as B,. Note that given a set of n periodic tasks, Bn =
0, since there is no lower priority task to block xn.

Theorem 6 can now be generalized in a straightforward fashion. In order to test the
schedulability of Xj, we need to consider both the preemptions caused by higher priority
tasks and blocking by lower priority tasks, along with the utilization of Xj. The blocking of any
instance of xs is bounded by Bj. Thus, Theorem 6 becomes

Theorem 8: Suppose that a task does not suspend itself from initiation to comple-
tion. A set of n periodic tasks using the read- or write-priority ceiling protocol can
be scheduled by the rate monotonic algorithm if the following conditions are satis-
fied:

4That is, the conditions under which all the instances of all the n tasks will meet their deadlines.

10 CMU/SEI-89-TR-18

C, C, C B

r, T2 r,- r{

Proof: Suppose that for each task x(the inequality is satisfied. It follows that the
inequality of Theorem 6 will also be satisfied with n - / and C, replaced by Cj«•
(C; + Bj). That is, in the absence of blocking, any instance of task xt will still meet
its deadline even if it executes for (Cj + Bj) units of time. It follows that task xj, if it
executes for only Cj units of time, can be delayed by S, units of time and still meet
its deadline. Hence the theorem follows.

Remark: The first / terms in the above inequality constitute the effect of preemptions from all
higher priority tasks and the execution time of tj, while Bj of the last term represents the
worst case blocking time due to all lower priority tasks for one instance of task Xj.

Corollary 9: A set of n periodic tasks using the read- or write-priority ceiling
protocol can be scheduled by the rate monotonic algorithm if the following con-
dition is satisfied:

2i+ ... +S + W<a(i, ... ,^±)^n(2^-l)

Proof: Since n(2lfn-iyzi(2l,i-l) and mox&, ••• ,£i)£ J, if this inequality holds

then all the inequalities in Theorem 8 also hold.

CMU/SEI-89-TR-18 11

12 CMU/SEI-89-TR-18

3. Performance Evaluation
In the previous section, we have assumed that all the tasks are periodic and that all the
database objects are in the main memory. In this section, we relax these two assumptions
and examine the performance of read- or write-priority ceiling protocol versus the perfor-
mance of the two-phase lock protocol with and without priority assignments to tasks. This
experiment investigates the performance of the performance characteristics in a single-site
database system, using the University of Virginia's database prototyping tool [25]. In this
experiment, we assume that the transaction system is a soft real-time system, in the sense
that we do not guarantee the transaction deadlines. However, each transaction has a dead-
line and we assume that there will be no value in completing a transaction once it has
missed its deadline. Transactions that miss the deadline are aborted, and disappear from
the system immediately with some abort cost. In this experiment, each task consists of a
single transaction with an execution profile that alternates database access requests with
equal computation requests, and some processing requirement for termination (either com-
mit or abort). Thus the total processing time of a transaction is directly related to the num-
ber of data objects accessed.

In the experiments, transactions are generated with exponentially distributed interarrival
times, and the data objects updated by a transaction are chosen uniformly from the data-
base. Due to space considerations, we cannot present all our results but have selected the
graphs which best illustrate the difference and performance of the algorithms. For example,
we have omitted the results of an experiment that varied the size of the database, and thus
the number of conflicts. This is because they only confirm and do not increase the knowl-
edge yielded by other experiments. The measure of merit is the throughput and the per-
centage of transactions that miss their deadlines. The measure of throughput is records
accessed per second for successful transactions, not in transactions per second. This is to
account for the fact that bigger transactions need more database processing.

For each experiment and for each algorithm tested, we collected performance statistics and
averaged over 10 runs. We have used the transaction size (the number of data objects a
transaction needs to access) as one of the key variables in the experiments. It varies from a
small fraction up to a relatively large portion (10%) of the database so that conflict would
occur frequently. The high conflict rate allows synchronization protocols to play a significant
role in the system performance. We chose the arrival rate so that protocols are tested in a
heavily loaded system, because when designing real-time systems, one must consider high-
load situations. Even though high-load situations may not arise frequently, one would like to
have a system that misses as few deadlines as possible when the system is under
stress [1].

In Figures 3-1 and 3-2, the throughput of the priority-ceiling protocol (C), the two-phase lock-
ing protocol with priority mode (P), and the two-phase locking protocol without priority mode
(L), is shown for transactions of different sizes with balanced workload and I/O bound work-
load. The two important factors affecting the performance of locking protocols are their abili-
ties to resolve the locking conflicts and to perform the I/O and transactions in parallel. When

CMU/SEI-89-TR-18 13

the transaction size is small, there is little locking conflict and the problem such as deadlock
and priority inversion has little effect upon the overall performance of a locking protocol. On
the other hand, when transaction size becomes large, the probability of locking conflict rises
rapidly. In fact, the probability of deadlocks goes up with the fourth power of the transaction
size [8]. Hence, we would expect that the performance of protocols will be dominated by
their abilities to handle locking conflicts when transaction size is large.

20.0

Throughput
(records/second)

20 24
Transaction size

Figure 3-1: Balanced Workload

As illustrated in Figures 3-1 and 3-2, the performance of the two-phase lock algorithm, with
or without priority assignments to transactions, degrades very fast when transaction size in-
creases. This can be attributed to the inability of this protocol to prevent deadlock and prior-
ity inversions. On the other hand, the read- or write-priority ceiling protocol handles locking
conflicts very well. The protocol is free from deadlocks and exhibits the block-at-most-once
property. Hence, this protocol performs much better than the two-phase lock protocol when
the transaction size is large. The main weakness of the read- or write-priority ceiling
protocol is its inability to perform I/O and transactions in parallel. For example, suppose that
transaction T has locked O^ and it now wants to lock data object 02. Unfortunately, 02 is
not in the main memory. As a result, T is suspended. However, neither are transactions
with priorities lower than the read- or write-priority ceiling of 01 allowed to execute. This
could lead to the idling of the processor until either 02 is transferred to the main memory or
a transaction whose priority is higher than the read- or write-priority ceiling arrives. We call
this I/O blocking. When transaction size is small, the locking conflict rate is small. Hence,
the two-phase lock performs well. However, due to I/O blocking the throughput of read- or

14 CMU/SEI-89-TR-18

25.0,

(records/second)
20.0-

15.0-

10.0

Figure 3-2: I/O Bounded Workload

write-priority ceiling protocol is not as good as that of two-phase lock protocol, especially
when the workload is I/O bounded.

Since I/O cost is one of the key parameters in determining performance, we have investi-
gated an approach to improve system performance by performing the I/O operation before
locking. This is called the intention I/O. In the intention mode of I/O operation, the system
"pre-fetches" data objects that are in the access lists of transactions submitted, without lock-
ing them. This approach will reduce the locking time of data objects, resulting in higher
throughput. As shown in Figure 3-3, intention I/O improves throughput of both the two-
phase locking and the ceiling protocol. However, improvement in the ceiling protocol is
much more significant. This is because intention I/O effectively solves the I/O blocking prob-
lem of the read- or write-priority ceiling protocol.

Another important performance statistic is the percentage of transactions missing deadlines,
since the synchronization protocol in real-time database systems should satisfy the timing
constraints of individual transactions. In our experiments, each transaction's deadline is set
proportional to its size and system workload (number of transactions), and the transaction
with the shorter deadline is assigned a higher priority. As shown in Figure 3-4, the percent-
age of transactions missing deadlines increases sharply for the two-phase locking protocol
as the transaction size increases due to the protocol's inability to deal with deadlock and to
give preference to transactions with shorter deadlines. Two-phase lock with priority assign-
ment performs somewhat better, because the timing constraints of transactions are consid-

CMU/SEI-89-TR-18 15

25.0,

(recordvsccond)

0 4 8 12 16 20 24
Transaction size

Figure 3-3: With Intention I/O

ered, although the deadlock and priority-inversion problems still handicap performance. The
read- or write-priority ceiling protocol has the best relative performance because it ad-
dresses both the deadlock and priority-inversion problem.

16 CMU/SEI-89-TR-18

Percentage of
missing deadline

70.0r

60.0-

12 16 20 24
Transaction size

Figure 3-4: Percentage of Missing Deadline

CMU/SEI-89-TR-18 17

18 CMU/SEI-89-TR-18

4. Conclusions
Real-time database is an important area of research, with applications ranging from surveil-
lance to reliable manufacturing and production control. In this paper, we have investigated
the read- or write-priority ceiling protocol, which integrates the two-phase lock protocol with
priority-driven real-time scheduling. We have shown that this protocol is free from mutual
deadlock and that a task x can be blocked for at most the duration of a single embedded
transaction of a lower priority task until x suspends itself or completes. We have also devel-
oped schedulability bounds for periodic tasks in a centralized in-core database. Finally, we
experimentally evaluated the performance of this protocol when the tasks are invoked
aperiodically and the database is no longer in-core.

CMU/SEI-89-TR-18 19

20 CMU/SEI-89-TR-18

References
[I] Abbott, R. and Garcia-Molina, H.

Scheduling Real-Time Transactions: A Performance Study.
Proceedings of VLDB Conference, pp 1-12, September 1988.

[2] Attar, R., Bernstein P. A., and Goodman, N.
Site Initialization, Recovery and Backup in a Distributed Database System.
IEEE Transaction on Software Engineering, November 1984.

[3] . Been, C, Bernstein, P.A., Goodman, N., and Lai, M. Y.
A Concurrency Control Theory for Nested Transactions.
ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing, 1983.

[4] Bernstein, P. A., Shipman, D. W., and Wong, W. S.
Formal Aspects of Serializability in Database Concurrency Control.
IEEE Transactions on Software Engineering -.203 - 216,1979.

[5] Bernstein, P. A., Hadzilacos, V., and Goodman, N.
Concurrency Control and Recovery in Database Systems.
Addison-Wesley Publication Co., 1987.

[6] Eswaran, K. P., Gray, J. N., Lorie, R. A., and Traiger, I. L
The Notion of Consistency and Predicate Lock in a Database System.
CACM19, No 11, November 1976.

[7] Garcia-Molina, H.
Using Semantic Knowledge For Transaction Processing In A Distributed Database.
ACM Transaction on Database Systems, Vol 8, No. 2, June 1983.

[8] Gray, J., et al.
A Straw Man Analysis of Probability of Waiting and Deadlock.
IBM Research Report, RJ 3066,1981.

[9] Lampson, B. W. and Redell, D. D.
Experiences with Processes and Monitors in Mesa.
Communications of the ACM23[2]: 105-117, February 1980.

[10] Lehoczky, J. P. and Sha, L
Performance of Real-Time Bus Scheduling Algorithms.
ACM Performance Evaluation Review, Special Issue 14, No. 1, May 1986.

[II] Lehoczky, J. P., Sha, L., and Strosnider, J.
Enhancing Aperiodic Responsiveness in A Hard Real-Time Environment.
IEEE Real-Time System Symposium, 1987.

[12] Lehoczky, J. P., Sha, L., and Ding, Y.
The Rate Monotonic Scheduling Algorithm: Exact Characterization and Average

Case Behavior.
Technical Report, Department of Statistics, Carnegie Mellon University, 1987.

[13] Leinbaugh, D. W.
Guaranteed Response Time in a Hard Real-Time Environment.
IEEE Transactions on Software Engineering, January 1980.

CMU/SEI-89-TR-18 21

[14] Leung, J. Y. and Merrill, M. L
A Note on Preemptive Scheduling of Periodic, Real-Time Tasks.
Information Processing Letters 11 [3]:115 -118, November 1980.

[15] Liu, C. L and Layland, J. W.
Scheduling Algorithms for Multiprogramming in a Hard Real-Time Environment.
J/*C/W20[1]:46-61,1973.

[16] Lynch, N. A.
Multi-level Atomicity - A New Correctness Criterion for Database Concurrency Con-

trol.
ACM Transaction on Database Systems, Vol. 8, No. 4 , December 1983.

[17] Mohan, C, Russell, D., Kedem, Z. M., and Silberschatz, A.
Lock Conversion in Non-Two-Phase Locking Protocols.
IEEE Transaction on Software Engineering, January 1985.

[18] Mohan, C, Lindsay, B., and Obermarck, R.
Transaction Management in The R* Distributed Database Management System.
ACM Transactions on Database Systems 11, No. 4, December 1986.

[19] Mok,A. K.
Fundamental Design Problems of Distributed Systems for the Hard-Real-Time

Environment
PhD thesis, Massachusetts Institute of Technology, 1983.

[20] Papadimitriou, C. H. and Kanellakis, P. C.
On Concurrency Control by Multiple Versions.
ACM Transaction on Database Systems, March 1984.

[21] Papadimitriou, C.
7770 Theory of Database Concurrency Control.
Computer Science Press, 1986.

[22] Ramaritham, K. and Stankovic, J. A.
Dynamic Task Scheduling in Hard Real-Time Distributed Systems.
IEEE Software, July 1984.

[23] Schwarz, P.
Transactions on Typed Objects.
PhD thesis, Department of Computer Science, Carnegie Mellon University, 1984.

[24] Sha, L., Rajkumar, R., and Lehoczky, J. P.
Priority Inheritance Protocols: An Approach to Real-Time Synchronization.
Technical Report, Department of Computer Science, Carnegie Mellon University,

1987 [to appear in IEEE Transactions on Computers].

[25] Son, S. H.
A Message-Based Approach to Distributed Database Prototyping.
Fifth IEEE Workshop on Real-Time Software and Operating Systems :71-74, May

1988.

22 CMU/SEI-89-TR-18

[26] Weihl, W. E. and Liskov, B.
Specification and Implementation of Resilient Atomic Data Types.
Proceedings of The SIGPLAN Symposium on Programming Language Issues , June

1983.

[27] Zhao, W., Ramamritham, K., and Stankovic, J.
Preemptive Scheduling Under Time and Resource Constraints.
IEEE Transactions on Computers, August 1987.

CMU/SEI-89-TR-18 23

24 CMU/SEI-89-TR-18

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

1. REPORT SECURITY CLASSIFICATION

UNCLASSIFIED
2.. SECURITY CLASSIFICATION AUTHORITY

N/A
2b. OECLASSIFICATION/OOWNGBAOING SCHEDULE

N/A
4 PERFORMING ORGANIZATION REPORT NUMBER(S)

CMU/SEI-89-TR-18

6. NAME OF PERFORMING ORGANIZATION

SOFTWARE ENGINEERING INST.

8b. OFFICE SYMBOL
(If applicable!
SEI

lb. RESTRICTIVE MARKINGS

NONE
3. OlSTRIBUTION/AVAILABILITY OF REPORT

APPROVED FOR PUBLIC RELEASE
DISTRIBUTION UNLIMITED

S. MONITORING ORGANIZATION REPORT NUMBER(S)

ESD-89-TR-26

7a. NAME OF MONITORING ORGANIZATION

SEI JOINT PROGRAM OFFICE

6c ADDRESS (City. State and 7.1? Code}

CARNEGIE-MELLON UNIVERSITY
PITTSBURGH, PA 15213

, NAME OF FUNOING/SPONSORING
ORGANIZATION

SEI JOINT PROGRAM OFFICE

7b. AOORESS (City. Stair and ZIP Coda)

ESD/XRS1
HANSCOM AIR FORCE BASE
HAMSPnM. MA nw^i

8b. OFFICE SYMBOL
lit applicable

ESD/XRS1

9. PROCUREMENT INSTRUMENT lOENTIFICATIQNJXUMBER

F1962885C0003
AOORESS (City. Stau and Zlf Code)

CARNEGIE-MELLON UNIVERSITY
PITTSBURGH, PA 15213

10. SOURCE OF FUNOING NOS.

PROGRAM
ELEMENT NO.

11. TITLE (Includa Security CutMtiftcaUonl

A REAL-TIME LOCKING PROTOCOL

63752F

PROJECT
NO.

N/A

TASK
NO.

N/A

WORK UNIT
NO.

N/A

12. PERSONAL AUTMOR(S)

Lui Sha, Ragunathan Rajkumar, Sang Son, and Chun-Hyon Chang
13*. TYPE OF REPORT

FTNAT,

13b. TIME COVERED

FROM TO

14. DATE OF REPORT (Yr.. Mo.. Day)

April 1989

IS. PAGE COUNT

 la, PH.
16. SUPPLEMENTARY NOTATION

COSATI COOES

FIELD GROUP SUB. GR.

18. SUBJECT TERMS (Continue on reverse if iteceuary and idtntify by bloc* number)

blocking
locking protocol
priority inversion

priority scheduling
real-time

19. ABSTRACT (Continue on rever%e it neceuary and identify by Mock number)

When a database system is used in a real-time application, the concurrency control
protocol must satisfy not only the consistency of shared data but also the timing
constraints of the application. In this paper, we examine a priority-driven two-
phase lock protocol called the read- or write-priority celing protocol. We show
that this protocol is free of deadlock, and in addition a high-priority transaction
can be blocked by lower priority transactions for at most the duration of a single
embedded transaction. We then evaluate system performance experimentally.

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT

UNCLASSIFIED/UNLIMITED £j SAME AS RPT. D OTIC USERS Q

21. ABSTRACT SECURITY CLASSIFICATION

UNCLASSIFIED, UNLIMITED DISTRIBUTION
22*. NAME OF RESPONSIBLE INDIVIDUAL

KARL H. SHINGLER
22b. TELEPHONE NUMBER

(Include Area Code I

412 268-7630

22c. OFFICE SYMBOL

SEI JPO
DO FORM 1473. 83 APR EDITION OF 1 JAN 73 IS OBSOLETE.

SECURITY CLASSIFICATION OF THIS PAGE

